If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5n^2-5n-252=0
a = 5; b = -5; c = -252;
Δ = b2-4ac
Δ = -52-4·5·(-252)
Δ = 5065
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{5065}}{2*5}=\frac{5-\sqrt{5065}}{10} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{5065}}{2*5}=\frac{5+\sqrt{5065}}{10} $
| -4+6x+7x=5x+2+2 | | 3x=1=25 | | X^2=7x-144=0 | | 3/4y+1/9=1/4y-1/7 | | 7x+5+x-3=x=5 | | p+6=2p+8 | | 35=-7/5u | | 5−7y=−17 | | -10x-(4)=14 | | 10b^2-12b-10=6 | | 3x+38=-3(-6-4x) | | -7.2(1+6.8x)-0.4=139.28 | | 4=10n+3 | | 12x-x2-36=0 | | -6(2a+7)-8=-122 | | 1-x/7=3x+1 | | 12+2x+10=6+6x-4 | | (X-4)^2+6x=(x+3)(x-1)+6 | | -4y+2y-6-2=6 | | 48=x-12 | | 5=2p-4+p | | y/2+10=35 | | 28=-7/3y | | 8−8t=-6t | | 40=y/3 | | 8=x10 | | 729=3k53 | | 83=52+g | | 14y+17+7y=21y-10+27 | | 6x+12=4x+17 | | x^=16x | | 6d−2/11=2d−13/2 |